3.548 \(\int (a+b \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=352 \[ \frac{2 \sqrt{a+b} \left (9 a^2-7 a b+b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}+\frac{2 b^2 \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}-\frac{14 a (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d} \]

[Out]

(-14*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b
)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) + (2*Sqrt[a + b]*(9*a^2
 - 7*a*b + b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*
(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (2*a^2*Sqrt[a + b]*Cot[c + d*x]*
EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.334114, antiderivative size = 352, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.429, Rules used = {3782, 4058, 3921, 3784, 3832, 4004} \[ \frac{2 \sqrt{a+b} \left (9 a^2-7 a b+b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}+\frac{2 b^2 \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}-\frac{14 a (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-14*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b
)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) + (2*Sqrt[a + b]*(9*a^2
 - 7*a*b + b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*
(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (2*a^2*Sqrt[a + b]*Cot[c + d*x]*
EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3782

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n
- 2))/(d*(n - 1)), x] + Dist[1/(n - 1), Int[(a + b*Csc[c + d*x])^(n - 3)*Simp[a^3*(n - 1) + (b*(b^2*(n - 2) +
3*a^2*(n - 1)))*Csc[c + d*x] + (a*b^2*(3*n - 4))*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int (a+b \sec (c+d x))^{5/2} \, dx &=\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{2}{3} \int \frac{\frac{3 a^3}{2}+\frac{1}{2} b \left (9 a^2+b^2\right ) \sec (c+d x)+\frac{7}{2} a b^2 \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{2}{3} \int \frac{\frac{3 a^3}{2}+\left (-\frac{7 a b^2}{2}+\frac{1}{2} b \left (9 a^2+b^2\right )\right ) \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{3} \left (7 a b^2\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{14 a (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}+\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}+a^3 \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{3} \left (b \left (9 a^2-7 a b+b^2\right )\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{14 a (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}+\frac{2 \sqrt{a+b} \left (9 a^2-7 a b+b^2\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}+\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 17.6498, size = 713, normalized size = 2.03 \[ \frac{\cos ^2(c+d x) (a+b \sec (c+d x))^{5/2} \left (\frac{14}{3} a b \sin (c+d x)+\frac{2}{3} b^2 \tan (c+d x)\right )}{d (a \cos (c+d x)+b)^2}+\frac{2 (a+b \sec (c+d x))^{5/2} \left (-i \left (-9 a^2 b+3 a^3+7 a b^2-b^3\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+b}{a+b}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a+b}{a-b}\right )+6 i a^3 \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right )+7 a b \sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right ) \left (a \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )-1\right )^2-b \tan ^4\left (\frac{1}{2} (c+d x)\right )+b\right )-7 i a b (a-b) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+b}{a+b}} E\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right )\right )}{3 d \sqrt{\frac{b-a}{a+b}} \sqrt{\frac{1}{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )}} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )-1\right ) \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right )^{3/2} \sec ^{\frac{5}{2}}(c+d x) (a \cos (c+d x)+b)^{5/2} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac{1}{2} (c+d x)\right )+1}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a + b*Sec[c + d*x])^(5/2)*((-7*I)*a*(a - b)*b*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]]
, (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 +
b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(3*a^3 - 9*a^2*b + 7*a*b^2 - b^3)*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)
]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Ta
n[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (6*I)*a^3*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-
a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt
[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 7*a*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2
]*(b - b*Tan[(c + d*x)/2]^4 + a*(-1 + Tan[(c + d*x)/2]^2)^2)))/(3*Sqrt[(-a + b)/(a + b)]*d*(b + a*Cos[c + d*x]
)^(5/2)*Sec[c + d*x]^(5/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)*(1 + Tan[(c + d*x)/2]
^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]) + (Cos[c + d*x
]^2*(a + b*Sec[c + d*x])^(5/2)*((14*a*b*Sin[c + d*x])/3 + (2*b^2*Tan[c + d*x])/3))/(d*(b + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [B]  time = 0.347, size = 1514, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(5/2),x)

[Out]

2/3/d*(-1+cos(d*x+c))^2*(3*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-9*sin(d*x+c)*cos(d*x+c)^2
*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-7*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-sin(d*x+c)*
cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3-6*cos(d*x+c)^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3
+7*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+7*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x
+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1
))^(1/2)*a*b^2+3*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-9*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(
1/2))*sin(d*x+c)*a^2*b-7*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2-cos(d*x+c)*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/
(a+b))^(1/2))*sin(d*x+c)*b^3-6*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3+7*cos(d*x+c)*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b+7*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2-7*cos(d*x
+c)^3*a^2*b-cos(d*x+c)^3*a*b^2+7*cos(d*x+c)^2*a^2*b-7*cos(d*x+c)^2*a*b^2-cos(d*x+c)^2*b^3+8*cos(d*x+c)*a*b^2+b
^3)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2/(b+a*cos(d*x+c))/cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2), x)